Predicting stock returns in the presence of uncertain structural changes and sample noise

Daniel Mantilla-García, Vijay Vaidyanathan

Resultado de la investigación: Artículos / NotasArtículo Científicorevisión exhaustiva

Resumen

The predictive power of the dividend-price ratio has been the subject of intense scrutiny. Most studies on return predictability assume that predictor variables follow stationary processes with constant long-run means. Following recent evidence on the role of structural breaks in the dividend-price ratio mean, we propose an estimation method that explicitly incorporates uncertainty about the location and magnitude of structural breaks in the predictor that extracts the regime mean component of the dividend-price ratio. Adjusting for structural changes in the ratio’s mean and estimation error significantly improves predictive power of the dividend-price ratio as well as other standard predictors in sample and out of sample.

Idioma originalInglés
Páginas (desde-hasta)357-391
Número de páginas35
PublicaciónFinancial Markets and Portfolio Management
Volumen31
N.º3
DOI
EstadoPublicada - 1 ago. 2017
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Predicting stock returns in the presence of uncertain structural changes and sample noise'. En conjunto forman una huella única.

Citar esto