Patients classification on weaning trials using Neural Networks and Wavelet Transform

Carlos Arizmendi, Juan Viviescas, Hernando GonzÁlez, Beatriz Giraldo

Resultado de la investigación: Libro / Capitulo del libro / InformeLibros de Investigaciónrevisión exhaustiva

1 Cita (Scopus)

Resumen

The determination of the optimal time of the patients in weaning trial process from mechanical ventilation, between patients capable of maintaining spontaneous breathing and patients that fail to maintain spontaneous breathing, is a very important task in intensive care unit. Wavelet Transform (WT) and Neural Networks (NN) techniques were applied in order to develop a classifier for the study of patients on weaning trial process. The respiratory pattern of each patient was characterized through different time series. Genetic Algorithms (GA) and Forward Selection were used as feature selection techniques. A classification performance of 77.00.. 0.06% of well classified patients, was obtained using a NN and GA combination, with only 6 variables of the 14 initials.

Idioma originalInglés
Título de la publicación alojadaIntegrating Information Technology and Management for Quality of Care
EditorialIOS Press
Páginas107-110
Número de páginas4
ISBN (versión impresa)9781614994220
DOI
EstadoPublicada - 2014
Evento12th International Conference on Informatics, Management, and Technology in Healthcare, ICIMTH 2014 - Athens, Grecia
Duración: 10 jul. 201413 jul. 2014

Serie de la publicación

NombreStudies in Health Technology and Informatics
Volumen202
ISSN (versión impresa)0926-9630
ISSN (versión digital)1879-8365

Conferencia

Conferencia12th International Conference on Informatics, Management, and Technology in Healthcare, ICIMTH 2014
País/TerritorioGrecia
CiudadAthens
Período10/07/1413/07/14

Huella

Profundice en los temas de investigación de 'Patients classification on weaning trials using Neural Networks and Wavelet Transform'. En conjunto forman una huella única.

Citar esto