Dual projective line

Astrid Liliana Contreras Mendoza, Claudia Inés Granados

Producción científica: EventosEventos científicosrevisión exhaustiva

Resumen

Projective geometry had become the geometric language of algebra, and projective spaces had become naturally associated with vector spaces. We use this algebraic approach to make a generalization: we associate the projective line to the free R-modules of rank two. We define the projective line and dual projective line over a ring R and prove that there exists a bijective correspondence between projective space and dual projective space. We also prove that the bilinear form associated with this bijective correspondence determines a symplectic structure over the R-module R2, where R is a total quotient ring.
Idioma originalEspañol (Colombia)
EstadoPublicada - 27 nov. 2024
Evento ISAAC-ICMAM Latin America Conference of Women in Mathematics 2024 -
Duración: 27 nov. 202429 nov. 2024
https://sites.google.com/view/isaac-icmam-conference-4-women/home?authuser=0

Conferencia

Conferencia ISAAC-ICMAM Latin America Conference of Women in Mathematics 2024
Título abreviado ISAAC-ICMAM 2024
Período27/11/2429/11/24
Dirección de internet

Palabras clave

  • Projective line
  • Dual
  • Total quotient ring.
  • bijective
  • symplectic structure

Citar esto