Design of a Sign Language-to-Natural Language Translator Using Artificial Intelligence

Hernando Gonzalez, Silvia Hernández, Oscar Calderón

Producción científica: Artículos / NotasArtículo Científicorevisión exhaustiva

3 Citas (Scopus)

Resumen

This paper describes the results obtained from the design and validation of translation gloves for Colombian sign language (LSC) to natural language. The MPU6050 sensors capture finger movements, and the TCA9548a card enables data multiplexing. Additionally, an Arduino Uno board preprocesses the data, and the Raspberry Pi interprets it using central tendency statistics, principal component analysis (PCA), and a neural network structure for pattern recognition. Finally, the sign is reproduced in audio format. The methodology developed below focuses on translating specific preselected words, achieving an average classification accuracy of 88.97%.

Idioma originalInglés
Páginas (desde-hasta)89-98
Número de páginas10
PublicaciónInternational journal of online and biomedical engineering
Volumen20
N.º3
DOI
EstadoPublicada - 2024

Huella

Profundice en los temas de investigación de 'Design of a Sign Language-to-Natural Language Translator Using Artificial Intelligence'. En conjunto forman una huella única.

Citar esto