Binary classification of brain tumours using a discrete wavelet transform and energy criteria

Carlos Arizmendi, Alfredo Vellido, Enrique Romero

Resultado de la investigación: Libro / Capitulo del libro / InformeLibros de Investigaciónrevisión exhaustiva

15 Citas (Scopus)

Resumen

The accurate diagnosis of human brain tumours is a sensitive medical task, for which radiology experts often must rely on indirect signal measurements. There is thus a need for developing computer-based decision support tools to assist doctors in their diagnostic task. The experiments in this brief paper address such problem in the form of binary classification, for which the pre-processing of the Magnetic Resonance Spectroscopy (MRS) signal is a most relevant data analysis stage. A combination of the Discrete Wavelet Transform (DWT) for signal decomposition and an energy criterion for signal reconstruction is used to pre-process the MRS data prior to the feature selection and classification with Bayesian Neural Networks.

Idioma originalInglés
Título de la publicación alojada2011 IEEE 2nd Latin American Symposium on Circuits and Systems, LASCAS 2011 - Conference Proceedings
DOI
EstadoPublicada - 2011
Publicado de forma externa
Evento2011 IEEE 2nd Latin American Symposium on Circuits and Systems, LASCAS 2011 - Bogota, Colombia
Duración: 23 feb. 201125 feb. 2011

Serie de la publicación

Nombre2011 IEEE 2nd Latin American Symposium on Circuits and Systems, LASCAS 2011 - Conference Proceedings

Conferencia

Conferencia2011 IEEE 2nd Latin American Symposium on Circuits and Systems, LASCAS 2011
País/TerritorioColombia
CiudadBogota
Período23/02/1125/02/11

Huella

Profundice en los temas de investigación de 'Binary classification of brain tumours using a discrete wavelet transform and energy criteria'. En conjunto forman una huella única.

Citar esto