Analysis of the respiratory flow signal for the diagnosis of patients with chronic heart failure using artificial intelligence techniques

J. C. Rodríguez, Carlos J. Arizmendi, C. A. Forero, S. K. Lopez, B. F. Giraldo

Resultado de la investigación: Libro / Capitulo del libro / InformeLibros de Investigaciónrevisión exhaustiva

Resumen

Patients with Chronic Heart Failure (CHF) often develop oscillatory breathing patterns. This work proposes the characterization of respiratory pattern by Wavelet Transform (WT) technique to identify Periodic Breathing pattern (PB) and Non-Periodic Breathing pattern (nPB) through the respiratory flow signal. A total of 62 subjects were analyzed: 27 CHF patients and 35 healthy subjects. Respiratory time series were extracted, and statistical methods were applied to obtain the most relevant information to classify patients. Support Vector Machine (SVM) were applied using forward selection technique to discriminate patients, considering four kernel functions. Differences between these parameters are assessed by investigating the following four classification issues: healthy subjects versus CHF patients, PB versus nPB patients, PB patients versus healthy subjects, and nPB patients versus healthy subjects. The results are presented in terms of average accuracy for each kernel function, and comparison groups.

Idioma originalInglés
Título de la publicación alojada7th Latin American Congress on Biomedical Engineering, CLAIB 2016
EditoresJohn Bustamante, Daniel A. Sierra, Isnardo Torres
EditorialSpringer Verlag
Páginas46-49
Número de páginas4
ISBN (versión impresa)9789811040856
DOI
EstadoPublicada - 2017
Evento7th Latin American Congress on Biomedical Engineering, CLAIB 2016 - Bucaramanga, Santander, Colombia
Duración: 26 oct. 201628 oct. 2016

Serie de la publicación

NombreIFMBE Proceedings
Volumen60
ISSN (versión impresa)1680-0737

Conferencia

Conferencia7th Latin American Congress on Biomedical Engineering, CLAIB 2016
País/TerritorioColombia
CiudadBucaramanga, Santander
Período26/10/1628/10/16

Huella

Profundice en los temas de investigación de 'Analysis of the respiratory flow signal for the diagnosis of patients with chronic heart failure using artificial intelligence techniques'. En conjunto forman una huella única.

Citar esto