Analysis of cardiorespiratory interaction in patients submitted to the T-tube test in the weaning process implementing symbolic dynamics and neural networks

C. J. Arizmendi, E. H. Solano, H. Gonzalez, H. Gonzalez Acuna, B. F. Giraldo

Resultado de la investigación: Libro / Capitulo del libro / InformeLibros de Investigaciónrevisión exhaustiva

4 Citas (Scopus)

Resumen

The determination of the optimal time of the patients in weaning trial process from Mechanical Ventilation (MV), between patients capable of maintaining spontaneous breathing and patients that fail to maintain spontaneous breathing, is a very important task in intensive care unit. Symbolic Dynamic (SD) and Neural Networks (NN) techniques were applied in order to develop a classifier for the study of patients on weaning trial process. The respiratory pattern of each patient was characterized through different time series. In order to reduce the dimensionality of the system Forward Selection is implemented, obtaining a classification performance result of 85,96 ±6,26% with 64 variables differentiating between 3 classes analyzed at same time.

Idioma originalInglés
Título de la publicación alojada2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas101-105
Número de páginas5
ISBN (versión digital)9781538669877
DOI
EstadoPublicada - 25 jun. 2018
Evento2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018 - Chengdu, China
Duración: 26 may. 201828 may. 2018

Serie de la publicación

Nombre2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018

Conferencia

Conferencia2018 International Conference on Artificial Intelligence and Big Data, ICAIBD 2018
País/TerritorioChina
CiudadChengdu
Período26/05/1828/05/18

Huella

Profundice en los temas de investigación de 'Analysis of cardiorespiratory interaction in patients submitted to the T-tube test in the weaning process implementing symbolic dynamics and neural networks'. En conjunto forman una huella única.

Citar esto