Stochastic modeling, control, and verification of wild bodies

Daniel Erik Gierl, Leonardo Bobadilla, Oscar Sanchez, Steven M. Lavalle

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

This paper presents strategies for controlling the distribution of large numbers of minimalist robots (ones containing no sensors or computers). The strategies are implemented by varying area, speed, gate length, or gate configuration in environments composed of regions connected by gates and modelled by Continuous Time Markov chains. We demonstrate the effectiveness and practical feasibility of our strategies through physical experiments and simulation. We use Continuous Stochastic Logic to verify high level properties of our system and to evaluate the accuracy of our model. Also, we prove that our model is accurate and that our algorithms are efficient with respect to the number of regions and number of bodies.

Original languageEnglish
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages549-556
Number of pages8
ISBN (Electronic)9781479936854, 9781479936854
DOIs
StatePublished - 22 Sep 2014
Externally publishedYes
Event2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Duration: 31 May 20147 Jun 2014

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Country/TerritoryChina
CityHong Kong
Period31/05/147/06/14

Fingerprint

Dive into the research topics of 'Stochastic modeling, control, and verification of wild bodies'. Together they form a unique fingerprint.

Cite this