Ischemic Stroke Segmentation from a Cross-Domain Representation in Multimodal Diffusion Studies

Santiago Gómez, Daniel Mantilla, Brayan Valenzuela, Andres Ortiz, Daniela D Vera, Paul Camacho, Fabio Martínez

Research output: Book / Book Chapter / ReportResearch Bookspeer-review

1 Scopus citations

Abstract

Localization and delineation of ischemic stroke are crucial for diagnosis and prognosis. Diffusion-weighted MRI studies allow to associate hypoperfused brain tissue with stroke findings, observed from ADC and DWI parameters. However, this process is expensive, time-consuming, and prone to expert observational bias. To address these challenges, currently, deep representations are based on deep autoencoder representations but are limited to learning from only ADC observations, biased also for one expert delineation. This work introduces a multimodal and multi-segmentation deep autoencoder that recovers ADC and DWI stroke segmentations. The proposed approach learns independent ADC and DWI convolutional branches, which are further fused into an embedding representation. Then, decoder branches are enriched with cross-attention mechanisms and adjusted from ADC and DWI findings. In this study, we validated the proposed approach from 82 ADC and DWI sequences, annotated by two interventional neuroradiologists. The proposed approach achieved higher mean dice scores of 55.7% and 57.7% for the ADC and DWI annotations by the training reference radiologist, outperforming models that only learn from one modality. Notably, it also demonstrated a proper generalization capability, obtaining mean dice scores of 60.5% and 61.0% for the ADC and DWI annotations of a second radiologist. This study highlights the effectiveness of modality-specific pattern learning in producing cross-domain embeddings that enhance ischemic stroke lesion estimations and generalize well over annotations by other radiologists.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages776-785
Number of pages10
ISBN (Print)9783031439001
DOIs
StatePublished - 2023
Externally publishedYes
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14223 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Cross-domain learning
  • Difussion-weighted MRI
  • Ischemic stroke
  • Multi-segmentation strategies

Fingerprint

Dive into the research topics of 'Ischemic Stroke Segmentation from a Cross-Domain Representation in Multimodal Diffusion Studies'. Together they form a unique fingerprint.

Cite this