Abstract
This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed by fluorescence microscopy and atomic force microscopy. The peptide nanotube-folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube-folic acid led to an increase in the current signal. The human cervical cancer cells were bound to the modified electrode through the folic acid-folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)6]3-/4- as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube-folic acid modified electrode lowered the electron transfer resulting in a decrease in the measured current. A detection limit of 250 human cervical cancer cells per mL was obtained. Control experiments confirmed that the peptide nanotube-folic acid electrode specifically recognized folate receptors. The modified electrode described here opens up new possibilities for future applications in early stage diagnoses of diseases where cells over-express folate receptors, such as in cancer or leishmaniasis disease.
Original language | English |
---|---|
Pages (from-to) | 1026-1031 |
Number of pages | 6 |
Journal | Analyst |
Volume | 138 |
Issue number | 4 |
DOIs | |
State | Published - 21 Feb 2013 |
Externally published | Yes |