TY - GEN
T1 - Control design strategies for semi-active suspension system
AU - Maradey Lazaro, Jessica Gissella
AU - Villegas, Helio Esteban
AU - Ruiz, Brajan
AU - Aldana, Andrés
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Semi-Active Suspension Systems are very important to achieve comfort, ride handling, ground contact of the tyre, road-friendliness and works in a large range of operation. Its use an active dampers and the action of control is very good because of low energy consumption. The force of the damper is regulated according to the operating conditions. Magnetorheological Dampers are commonly used because of his yield resistance, low power, fast response and low cost of production. However, they behave in a non-linear way, following a dynamic of hysteresis so you should give a more sophisticated mathematical treatment. In this paper, we describe the modelling and design of two control strategies for Semi-Active Suspension System. Two control laws will be developed; classical PID and Fuzzy Logic controls law with the simulation and evaluate the stability and performance properties of our controllers in several different scenarios through analysis and simulation simultaneously. The performance of the system is determined by computer simulation in Matlab/ Simulink. The results obtained to compare and prove the effectiveness of these control approaches.
AB - Semi-Active Suspension Systems are very important to achieve comfort, ride handling, ground contact of the tyre, road-friendliness and works in a large range of operation. Its use an active dampers and the action of control is very good because of low energy consumption. The force of the damper is regulated according to the operating conditions. Magnetorheological Dampers are commonly used because of his yield resistance, low power, fast response and low cost of production. However, they behave in a non-linear way, following a dynamic of hysteresis so you should give a more sophisticated mathematical treatment. In this paper, we describe the modelling and design of two control strategies for Semi-Active Suspension System. Two control laws will be developed; classical PID and Fuzzy Logic controls law with the simulation and evaluate the stability and performance properties of our controllers in several different scenarios through analysis and simulation simultaneously. The performance of the system is determined by computer simulation in Matlab/ Simulink. The results obtained to compare and prove the effectiveness of these control approaches.
UR - http://www.scopus.com/inward/record.url?scp=85078661642&partnerID=8YFLogxK
U2 - 10.1115/IMECE2019-11450
DO - 10.1115/IMECE2019-11450
M3 - Libros de Investigación
AN - SCOPUS:85078661642
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Dynamics, Vibration, and Control
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Y2 - 11 November 2019 through 14 November 2019
ER -