TY - JOUR
T1 - Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation
AU - Munoz-Pinto, Dany J.
AU - Guiza-Arguello, Viviana R.
AU - Becerra-Bayona, Silvia M.
AU - Erndt-Marino, Josh
AU - Samavedi, Satyavrata
AU - Malmut, Sarah
AU - Russell, Brooke
AU - Höök, Magnus
AU - Hahn, Mariah S.
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2015.
PY - 2015
Y1 - 2015
N2 - This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings toward improving the biocompatibility of existing "off-the-shelf" small-caliber vascular grafts. Specifically, bioactive hydrogels-previously shown to support α1/α2 integrin-mediated cell adhesion but to resist platelet activation-were fabricated by combining poly(ethylene glycol) (PEG) with a 120 kDa, triple-helical collagen-mimetic protein (Scl2-2) containing the GFPGER adhesion sequence. Analysis of HAECs seeded onto the resulting PEG-Scl2-2 hydrogels demonstrated that HAEC adhesion increased with increasing Scl2-2 concentration, while HAEC migration rate decreased over this same concentration range. In addition, evaluation of HAEC phenotype at confluence indicated significant differences in the gene expression of NOS3, thrombomodulin, and E-selectin on the PEG-Scl2-2 hydrogels relative to PEG-collagen controls. At the protein level, however, only NOS3 was significantly different between the PEG-Scl2-2 and PEG-collagen surfaces. Furthermore, PECAM-1 and VE-cadherin expression on PEG-Scl2-2 hydrogels versus PEG-collagen controls could not be distinguished at either the gene or protein level. Cumulatively, these data indicate the PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. In future studies, the Scl2-2 protein can potentially be modified to include additional extracellular matrix or cytokine binding sites to further improve endothelial cell responses.
AB - This work evaluates the response of human aortic endothelial cells (HAECs) to thromboresistant collagen-mimetic hydrogel coatings toward improving the biocompatibility of existing "off-the-shelf" small-caliber vascular grafts. Specifically, bioactive hydrogels-previously shown to support α1/α2 integrin-mediated cell adhesion but to resist platelet activation-were fabricated by combining poly(ethylene glycol) (PEG) with a 120 kDa, triple-helical collagen-mimetic protein (Scl2-2) containing the GFPGER adhesion sequence. Analysis of HAECs seeded onto the resulting PEG-Scl2-2 hydrogels demonstrated that HAEC adhesion increased with increasing Scl2-2 concentration, while HAEC migration rate decreased over this same concentration range. In addition, evaluation of HAEC phenotype at confluence indicated significant differences in the gene expression of NOS3, thrombomodulin, and E-selectin on the PEG-Scl2-2 hydrogels relative to PEG-collagen controls. At the protein level, however, only NOS3 was significantly different between the PEG-Scl2-2 and PEG-collagen surfaces. Furthermore, PECAM-1 and VE-cadherin expression on PEG-Scl2-2 hydrogels versus PEG-collagen controls could not be distinguished at either the gene or protein level. Cumulatively, these data indicate the PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. In future studies, the Scl2-2 protein can potentially be modified to include additional extracellular matrix or cytokine binding sites to further improve endothelial cell responses.
UR - http://www.scopus.com/inward/record.url?scp=84943653234&partnerID=8YFLogxK
U2 - 10.1039/c5tb00990a
DO - 10.1039/c5tb00990a
M3 - Artículo Científico
AN - SCOPUS:84943653234
SN - 2050-7518
VL - 3
SP - 7912
EP - 7919
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
IS - 40
ER -